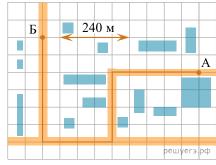
Централизованное тестирование по физике, 2016

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1,4 ± 0,2) Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Абитуриент провел поиск информации в сети Интернет о наиболее скоростных военных самолетах в мире. Результаты поиска представлены в таблице.

N₂	Название самолёта	Максимальная скорость
1	МиГ-31	3000 км/ч
2	F-111	44,2 км/мин
3	SR-71	9,80 · 10 ⁴ см/с
4	Cy-24	$2,45 \cdot 10^3$ км/ч
5	F-15	736 м/с


Самый скоростной самолет указан в строке таблицы, номер которой:

- 2)2
- 3)3
- 4) 4

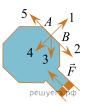
2. Зависимость проекции скорости υ_x материальной точки, движущейся вдоль оси Ox, от времени t имеет вид: $v_x = A + Bt$, где $A = 6.0 \text{ м/c}, B = 4.0 \text{ м/c}^2$. В момент времени t = 2.0 с модуль скорости υ материальной точки равен:

- 1) 2.0 m/c
- 2) 4.0 m/c5) 14 m/c
- 3) 6.0 m/c
- 4) 8.0 m/c

3. Если средняя путевая скорость движения автомобиля из пункта A в пункт $E \langle v \rangle = 19,0 \text{ км/ч}$ (см.рис.), то автомобиль находился в пути в течение промежутка времени Δt равного:

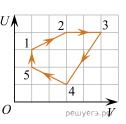
Примечание: масштаб указан на карте.

- 1) 128 c
- 2) 145 c
- 3) 162 c
- 4) 179 c
- 5) 216 c


4. Модуль скорости движения υ_1 первого тела массой m_1 в два раза больше модуля скорости движения v_2 второго тела массой m_2 . Если кинетические энергии этих тел равны ($E_{k1} = E_{k2}$), то отношение массы второго тела к массе первого тела равно:

- 1) $\frac{1}{2}$ 2) 1 3) $\sqrt{2}$ 4) 2

- 5) 4


- 5. Шайба массой $m=90\ {\ }^{\ }$ подлетела к вертикальному борту хоккейной коробки и отскочила от него в противоположном направлении со скоростью, модуль которой остался прежним: $\upsilon_2=\upsilon_1$. Если модуль изменения импульса шайбы $|\Delta p|=2,7$ $\frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{\mathrm{c}},$ то модуль скорости шайбы υ_2 непосредственно после ее удара о борт равен:

- 1) $5\frac{M}{C}$ 2) $10\frac{M}{C}$ 3) $15\frac{M}{C}$ 4) $20\frac{M}{C}$
- 6. В нижней части сосуда, заполненного газом, находится скользящий без трения невесомый поршень (см.рис.). Для удержания поршня в равновесии к нему приложена внешняя сила \vec{F} . Направление силы давления газа, действующей на плоскую стенку АВ сосуда, указано стрелкой, номер которой:

- 1) 1
- 2) 2 3) 3
- 5) 5
- 7. Число N_1 атомов титана $\left(M_1=48\ \frac{\Gamma}{{
 m MOJIb}}\right)$ имеет массу $m_1=2\ {
 m r},\ N_2$ атомов углерода $\left(M_2=12\ \frac{\Gamma}{{
 m MOJIb}}\right)$ имеет массу $m_2 = 1$ г. Отношение $\frac{N_1}{N_2}$ равно:
 - 1) $\frac{1}{4}$ 2) $\frac{1}{2}$ 3) 1 4) 2

- 8. При изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа изменилось от $p_1=130~{\rm k}\Pi{\rm a}$ до $p_2=140\ {
 m к}\Pi {
 m a}.$ Если начальная температура газа $T_1=325\ {
 m K},$ то конечная температура T_2 газа равна:
 - 1) 330 K
- 2) 350 K
- 3) 390 K
- 4) 400 K
- 5) 420 K
- 9. С идеальным одноатомным газом, количество вещества которого постоянно, провели процесс $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$. На рисунке показана зависимость внутренней энергии Uгаза от объема V. Укажите участок, на котором количество теплоты, полученное газом, шло только на приращение внутренней энергии газа:

- 1) $1 \to 2$
- 2) $2 \rightarrow 3$
- 4) $4 \rightarrow 5$
- 5) $5 \rightarrow 1$
- 10. Напряжение на клеммах солнечной батареи измеряется в:
- 1) ваттах
- 2) амперах
 - 3) вольтах 5) электрон-вольтах
- 4) ватт-часах
- 11. На рисунке 1 изображены линии напряженности электростатического поля, созданного точечными зарядами q_1 и q_2 . Направление напряженности \vec{E} электростатического поля, созданного системой зарядов q_1 и q_2 в точке A, обозначено на рисунке 2 цифрой:

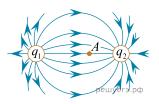
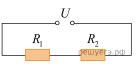
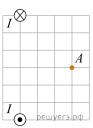
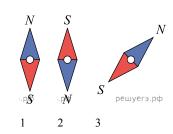
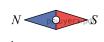



Рис. 1

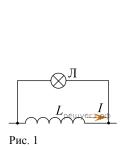

- Рис. 2
- 1) 1
- 2)2
- 3)3
- 4) 4
- 5) 5

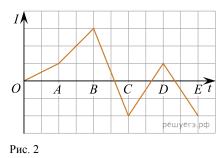

12. На рисунке изображен участок электрической цепи, напряжение на котором U. Если сопротивление резистора R_1 в три раза больше сопротивления резистора $R_2 \ (R_1 = 3R_2)$, то напряжение U_1 на резисторе R_1 равно:



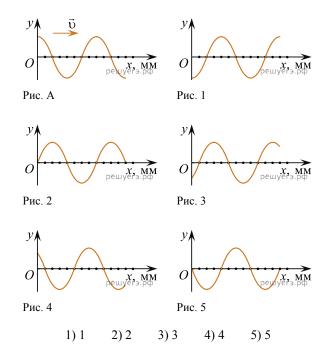
- 1) $\frac{3}{4}U$ 2) $\frac{2}{3}U$ 3) $\frac{1}{2}U$ 4) $\frac{1}{3}U$

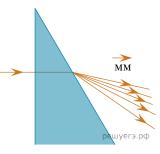
13. По двум длинным прямолинейным проводникам, перпендикулярным плоскости рисунка, протекают токи, создающие в точке A магнитное поле (см.рис.). Сила тока в проводниках одинакова. Если в точку A поместить магнитную стрелку, то ее ориентация будет такая же, как и у стрелки под номером:





- 1) 1 2) 2
- 3)3
- 5) 5


14. На рисунке 1 изображен участок электрической цепи, на котором параллельно катушке индуктивности L включена лампочка Л. График зависимости силы тока I в катушке индуктивности от времени t показан на рисунке 2. Лампочка будет светить наиболее ярко в течение интервала времени:



- 1) *OA*
- 2) *AB*
- 3) *BC*
- 4) CD
- 5) DE

15. По шнуру в направлении оси Ox распространяется поперечная гармоническая волна. На рисунке, обозначенном буквой A, изображен шнур в момент времени $t_0 = 0$ с. Если T — период колебаний точек шнура, то шнур в момент времени $t_1 = \frac{T}{4}$ изображен на рисунке, обозначенном цифрой:

16. На боковую поверхность стеклянного клина, находящегося в вакууме, падает параллельный световой пучок, содержащий излучение, спектр которого состоит из пяти линий видимого диапазона. Длины волн излучения соотносятся между собой как $\lambda_1 > \lambda_2 > \lambda_3 > \lambda_4 > \lambda_5$. Вследствие нормальной дисперсии после прохождения клина наименьшее отклонение от первоначального

направления распространения будет у света с длиной волны:

1) λ_1 2) λ_2 3) λ_3 4) λ_4 5) λ_5

17. На тонкую собирающую линзу с главным фокусом F падает расходящийся пучок света, ограниченный лучами 1 и 2. Прошедший через линзу пучок света правильно изображен на рисунке, обозначенном цифрой:

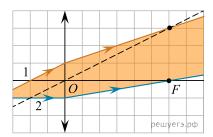


Рис. 1

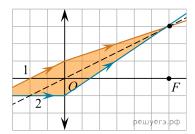


Рис. 2

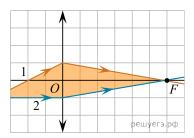


Рис. 3

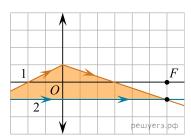


Рис. 4

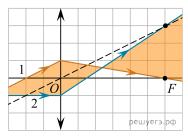
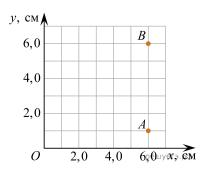
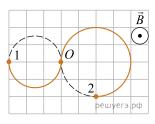


Рис. 5

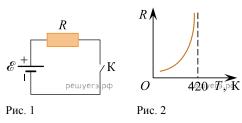

- 1) 1 2) 2 3) 3 4) 4 5) 5
- **18.** Число нейтронов в ядре атоме лития $^{7}_{3}\mathrm{Li}$ равно:
 - 1) 3 2) 4
- 3) 5
- 4) 7
- 5) 10

- 19. Парашютист совершил прыжок с высоты $h=1200\,\mathrm{M}$ над поверхностью Земли без начальной вертикальной скорости. В течение промежутка времени $\Delta t_1=6,0\,\mathrm{C}$ парашютист свободно падал, затем парашют раскрылся, и в течение пренебрежимо малого промежутка времени скорость парашютиста уменьшилась. Дальнейшее снижение парашютиста до момента приземления происходило с постоянной по модулю вертикальной скоростью υ . Если движение с раскрытым парашютом происходило в течение промежутка времени $\Delta t_2=92\,\mathrm{C}$, то модуль вертикальной скорости υ при этом движении был равен ... $\frac{\mathrm{KM}}{\mathrm{q}}$.
- **20.** На горизонтальном полу лифта, двигающегося с направленным вниз ускорением, стоит чемодан массой $m=30~\rm kr$, площадь основания которого $S=0,080~\rm m^2$. Если давление, оказываемое чемоданом на пол, $p=2,4~\rm k\Pi a$, то модуль ускорения a лифта равен ... $\frac{\rm дM}{\rm c^2}$.
- **21.** На горизонтальном прямолинейном участке сухой асфальтированной дороги водитель применил экстренное торможение. Тормозной путь автомобиля до полной остановки составил $s=31\,\mathrm{m}$. Если коэффициент трения скольжения между колесами и асфальтом $\mu=0,65$, то модуль скорости υ_0 движения автомобиля в начале тормозного пути равен ... $\frac{\mathrm{m}}{s}$.
- **22.** На гладкой горизонтальной поверхности лежит брусок массой m_2 $\vec{\upsilon}$ $m_1=52$ г, прикрепленный к стене невесомой пружиной жесткостью k=52 $\frac{\rm H}{\rm M}$ (см.рис.). Пластилиновый шарик массой $m_2=78$ г, летящий горизонтально вдоль оси пружины со скоростью, модуль которой $\upsilon=2,0$ $\frac{\rm M}{\rm c}$, попадает в брусок и прилипает к нему. Максимальное сжатие пружины $|\Delta l|$ равно ... мм.
- **23.** В сосуде объемом V=25,0 л находится газовая смесь, состоящая из гелия, количество вещества которого $\upsilon_1=2,00$ моль, и кислорода, количество вещества которого $\upsilon_2=0,800$ моль. Если абсолютная температура газовой смеси $T=290~\mathrm{K},$ то давление p этой смеси равно ... к Π а.
 - **24.** Вода $\left(\rho = 1, 0 \cdot 10^3 \; \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}, c = 4, 2 \cdot 10^3 \; \frac{\mathrm{Дж}}{\mathrm{K}\Gamma \cdot \mathrm{K}} \right)$ объемом


 $V=250~{\rm cm}^3$ остывает от температуры $t_1=98~{\rm ^{\circ}C}$ до температуры $t_2=60~{\rm ^{\circ}C}$. Если количество теплоты, выделившееся при охлаждении воды, полностью преобразовать в работу по поднятию строительных материалов массой $m=1,0~{\rm T}$, то они могут быть подняты на максимальную высоту h, равную ... дм.

- **25.** Температура нагревателя идеального теплового двигателя на $\Delta t = 100~^{\circ}\mathrm{C}$ больше температуры холодильника. Если температура холодильника $t = 100~^{\circ}\mathrm{C}$, то термический коэффициент полезного действия η двигателя равен ... %.
- **26.** На катод вакуумного фотоэлемента, изготовленного из никеля $(A_{\rm Bыx}=4,5~{\rm 9B}),$ падает монохроматическое излучение. Если фототок прекращается при задерживающем напряжении $U_3=7,5~{\rm B},$ то энергия E падающих фотонов равна ... эВ.

27. Если точечный заряд q=2,50 нКл, находящийся в вакууме, помещен в точку A (см.рис.), то потенциал электростатического поля, созданного этим зарядом, в точке B равен ... В.


28. Два иона (1 и 2) с одинаковыми заряди $q_1=q_2$, вылетевшие одновременно из точки O, равномерно движутся по окружностям под действием однородного магнитного поля, линии индукции \vec{B} которого перпендикулярны плоскости рисунка. На рисунке показаны траектории этих частиц в некоторый момент времени t_1 . Если масса первой частицы

 $m_1 = 36 \, \, \mathrm{a.\,e.m.}, \, \mathrm{то} \, \mathrm{масса} \, \mathrm{второй} \, \mathrm{частицы} \, m_2 \, \mathrm{равна} \, ... \, \mathrm{a.\,e.\,m.}$

29. В идеальном LC-контуре, состоящем из катушки индуктивности $L=27~{\rm M}\Gamma$ н и конденсатора емкостью $C=0,50~{\rm Mk}\Phi$, происходят свободные электромагнитные колебания. Если полная энергия контура $W=54~{\rm Mk}$ Дж, то в момент времени, когда заряд конденсатора $q=4,5~{\rm Mk}$ Кл, сила тока I в катушке равна ... мА.

30. В электрической цепи, схема которой приведена на рисунке 1, ЭДС источника тока $\varepsilon=10~\mathrm{B},$ а его внутреннее сопротивление пренебрежимо мало. Сопротивление резистора R зависит от температуры T. Бесконечно большим оно становится при $T\geqslant420~\mathrm{K}$ (см.рис. 2).

Удельная теплоемкость материала, из которого изготовлен резистор, $c=1000~\frac{\rm Д_{ KF}}{\rm KF\cdot K},$ масса резистора m=2,0 г. Если теплообмен резистора с окружающей средой отсутствует, а начальная температура резистора $T_0=280~\rm K,$ то после замыкания ключа K через резистор протечет заряд q, равный ... Кл.